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Fig. 4. Inner conductor of regular-polygon cross section for (a) N =2,
(b) N=3, (c) N=4, and(d) N=6.

inversion by optimization a general-purpose tool very applicable

to a broad range of cases.

Indeed, nearly all the structures examined led to large ratios

between adjacent sides in the transformed plane of the opti-

mization. These ratios cannot be handled with traditional tech-

niques, but by developing the integration techniques introduced

in [2], ratios up to 10 15 have been easily faced. Nevertheless,

these conformal mapping techniques often require knowledge of

magnetic boundary walls which are not immediately suggested

by the geometry of the structure.
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A Procedure for Solving the Electric Field Integral

Equation for a Dielectric Scatterer with a Large

Permittivity Using Face-Centered Node Points

Ching-Chuan Su

A&r-act —A numerical procedure for solving the electric field integral

equation (EFIE) using the pulse-basis block model is proposed. The
main features of the method are the use of face-centered node points

and a unique way of choosing the unknown fields. Such a procedure
keeps the resulting matrix relatively well conditioned, even when the
magnitude of the permittivity is large. In addition, the proposed pnoce-
dure can preserve the convolution property contained in the EFIE and,
hence, the FFT can be incorporated into the algorithm.

I. INTRODUCTION

The electric field integral equation (EFIE) is widely employed

to analyze inhomogeneous dielectric scatterers of arbitrary

shapes. To solve the integral equation numerically the method

employing the block model (i.e., using rectangular cells to mcldel

an arbitrarily shaped scatterer) in conjunction with the pulse-

function expansion and the point-matching technique is rather

popular [1]–[7]. Recently, the efficiency of this method with

respect to both computational speed and memory requirements

has been greatly improved by the use of the conjugate gradient

method (CGM) and the fast Fourier transform (FFT) [4]–[6].
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However, except for the two-dimensional TM (transverse

magnetic) scattering cases, the conventional procedure for solv-

ing the EFIE using the pulse-basis block model has one fatal

drawback: the relative permittivity of the scatterer must be kept

small (of order unity). Otherwise, the iterative CGM converges

very slowly or may even stagnate [5]–[7]. Even if a solution is

obtained using the CGM or other methods, it may contain

serious errors [7]–[9]. These errors are believed to be due to a

term in the EFIE representing the effect of induced polarization

charge [5]. (Note that such a term does not emerge in the TM

scattering.) It has been indicated that, in the presence of such a

charge term, the magnitudes of off-diagonal elements and hence

the condition numbers of the resulting matrices increase as the

permittivities are increased [5]. Remark that in the matrix equa-

tion Ax = b the condition number c of matrix A is a measure of

the sensitivity of solution x due to sight variation in matrix A or

vector b. For a well-conditioned matrix, c is close to unity; for

an ill-conditioned one, c >>1. A more detailed discussion of the

condition number is given in Section V. The accuracy may be

improved if more sophisticated approaches are used (to reduce

the error in matrix A), for example evaluating matrix elements

elaborately [5], [6], [8], [10], modeling the scatterer accurately by

using more flexible cells [8], [ 11]–[ 13], and employing higher

order basis functions [11]–[13]. However, these approaches are

not necessarily workable for scatterers with large permittivities

(for example, see [8]). Moreover, the use of sophisticated cell

structures and/or basis functions may degrade the convolution

property contained in the EFIE. Thus, the efficient FFT cannot

be applied and the memory requirement is prohibitively large.

In order to solve the EFIE using the simple pulse-basis block

model, a new procedure is proposed. The main features of this

procedure are the following two steps:

1)

2)

In

Face-centered node points are used. That is, the node

points at which the fields are to be sampled are not placed

at the center of each block, as conventionally done, but are

placed at the centers of the faces of each block. Such an

approach should represent the polarization charges in-

duced at the faces more accurately, especially at larger

permittivity discontinuities around which the electric field

varies rapidly.

The unknown fields at the face-centered node points are

chosen in a unique way to ensure that the magnitudes of

off-diagonal elements of the resulting matrix are small,

regardless of the magnitudes of the permittivities involved.

Such an approach will keep the condition number of the

resulting matrix small, even when the magnitudes of the

permittivities are large.

this investigation we consider the two-dimensional case,

where exact solutions for the electric field distributions inside

circular homogeneous cylinders are available and can be used to

check the calculated results. The numerical procedure discussed

in Sections III and IV can be generalized to the three-dimen-

sional case.

II. ELECTRIC FIELD INTEGRAL EQUATION

Consider the TE (transverse electric) scattering from an

isotropic dielectric cylinder with an arbitrary relative permittiv-

ity distribution ●(x, y) exposed to an incident field E’(.x, y)

polarized in the x – y plane. The resultant electric field E(x, y)
—— ~EX( x, y)+ ~EV(x, y) can be found from the magnetic vector

and electric scalar potentials, which are due to the polarization

Fig. 1. A rectangular mesh with ml X mz identical cells of size Ax by
A y. The (ml – 1) X (rnz – 1) cells should cover the cylinder’s cross sec-
tion.

current and polarization charge densities, respectively that is,

E(x, y)= E’(x, y)

+k2j@P){[E(X’,Y’) -l] E(X’,Y’)}dW

—
‘v/@P)P.(x’, Y’) didy’.
co

(1)

Here V = 2i?/ax + jk?/~y, the two-dimensional free-space

Green’s function G(kp) = H~2)(kp)/47, p2 = (x – X’)2 +(y –

Y’)2, kz = W2KOC0, and pc denotes the induced polarization

charge density, which can be expressed in several ways:

pc(x, y)=– Eov”{[E(x, y)–l]E(x, y)} (2a)

=Eov. E(x, y) (2b)

Ve(x, y)
——

— co .E(x, y)>
●(x, y)

(2C)

where the continuity equation and Gauss’s law have been made

use of. It is understood that (2b) and (2c) are valid in those

regions having no free charge, Different expressions correspond

to different formulations. Use of (2a) leads to the commonly

used electric field integral equation involving a dyadic Green’s

function. It is shown in Section V that the condition numbers of

the matrices resulting from such a formulation increase as the

permittivities are increased.

III. NUMERICAL PRQCEDURE FOR FACE-CENTERED

NODE PQINTS

The scatterer is modeled by rectangular cells wherein the

permittivity within each cell is treated as a constant (namely, the

block model). The pulse-function expansion and the point-

matching technique are employed in the numerical calculation.

The node points at which the EFIE is enforced are placed at the

centers of the faces (sides, in the two-dimensional case) of each

cell. The x and y components’ of the electric field are sampled

and matched at the points marked with a cross ( X ) and square

(¤), respectively, as depicted in Fig. 1. Note that these fields

are the normal components with respect to the corresponding

interfaces.

The polarization charge density can be given by (2). In the

block model the polarization charges are induced only at the

interfaces and can be found from the normal components of the

electric fields at the interfaces using (2a) or (2b). At an interface
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Fig. 2. Fields EII, EX2, EYI, and EY3 denote the normal components

at two face-centered node points. From such fields the polarization
charges at the node points are determined.

separating two blocks of dissimilar media, the normal compo-

nent of the electric field is discontinuous. From the continuity of

displacement it is known that the normal components of the

fields at the respective interfaces satisfy the relations (see Fig. 2

for the locations of the permittivities and field components)

and

elEY1 = ●3EY3.

(3a)

(3b)

At an interface separating two blocks of dissimilar media the

density becomes impulsive. Using (2b) and (3) the corresponding

surface (line, in the two–dimensional case) charge densities p,.

and p,Y at the respective face-centered node points are given by

and

Unique to this method is that we

represent the surface charge density

kll >1621 (4a)

otherwise (4b)

IEII > IE31 (4C)

otherwise. (4d)

use either (4a) or (4b) to

in the integral equation (1)

(and, hence, choose either E.2 or E.1 as the field to be deter-

mined) according to whether El or e2 is larger in magnitude. It is

essential to note that the fractions involving the relative permit-

tivities in the chosen formulas are always small in magnitude

(ordinarily less than unity). Consequently, the magnitudes of

off-diagonal matrix elements can be kept small, regardless of the

magnitudes the permittivities involved. In this manner, the node

point is not exactly placed at the interface, but approaches the

interface from the side where the permittivity is smaller. The

same procedure is used to select either EYI or EY3 as an

unknown field in the integral equation.

To comply with the FFT algorithm we use a rectangular mesh

which is composed of ml X m2 identical cells of size Ax by A y

and covers the cross section of the scatterer (see Fig. 1). Then,

on applying the point-matching technique at each node point,

the integral equation (1) becomes the 2 x m ~X mz simultaneous

equations in terms of the m ~ X m2 fields EX at the node polints

marked with a cross and the ml X mz fields EY at the node

points marked with a square:

EX(i, j)= E;(i, j)+sx(i, j)xl(i, j) E.(i, j)

mz—lml —l

+ Z Z {g(~–Pjj–~)x3(P79)Ex(Pjq)
q=o p=o

+g...(p, j,~)xl(p, ~) E)(p,~)~)

+g.y(i–p, j–~)x2(p, ~)E,(p,~)} (5a)

and

Ey(i, j)= E;(i, j)+sY(i, j)x2(i, j) EY(i, j)

?n—1in–1

+ X X {d-p7j-~) x4(p7~)Ey(p7~)
~=o ~=o

+gYX(i– P,j–q)Xl(p, ~) E~(p~~)

+gYy(i– p,j–q)x~(p, q) EY(p, ~)} (5b)

where i= O,l,. ... mlandnd j=O,l,. ””, m2–l. In(5) EX(i,.j)

and EY(i, j) denote the field components at the face-centered

node points approaching, according to the procedure just de-

scribed, the left and the bottom sides of cell ij, respectively.

E~(i, j) and E~(i, j) denote the x and y components of the

incident field at the corresponding node points. The quantities

X17 X29 X3? x47 g7 gxx~ gxy> gyx7 gyy, sx~ and $Y are defined in
what follows.

The functions Xl and X2 correspond to the effect of the

induced polarization charge, and X3 and Xd, of the polarization

current. By applying the pulse-function expansion or approxi-

mating the normal component of the electric field along an

interface by the field at the nearest face-centered node point,

EX(i, j) or E,(i, j), and using formula (4), we have

xl(i, j)={c(i, j)–.s(i -l, j)}l~xm,, 1(6a)

and

x2(i, j)={e(i, j)–~(i, j–l)}~y~,X [(6b)

where e(i, j) is equal to the average relative permittivity over the

cell ti, and ●x ~,x and ●Yma denote the greater magnitude

between ●(i, j) and <(i – 1, j) and between ●(i, j) and ●(i, j – 1),

respectively. It is seen that at an interface separating two blocks

of similar media, the polarization charge is set to zero automatic-

ally, as it should be. In other words the associated fictitious

charge [8] appearing in the conventional procedure is eliminated

automatically. To calculate the polarization current density, one

needs to know the electric field within the cells. By approximat-

ing the two components of such a field by the fields at the

respective nearest face-centered node point and using relation

(3), we have

X3(i, j)={e(i, j) E(i-l, j)-~[E(i, j)+~(i- l,j)l}/~X1n.X

(6c)

and

x4(ijj) ={c(i, j) E(i, j-l) -*[c(i, j)+e(i, j-l)] }/ey~,=.

(6d)
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In (5) the functions g denote the values of k 2 times an

integral of the Green’s function over a cell. Since the matrices

will be well conditioned, it suffices to use the simple formula

[14]

g(i, j)=k2G(kp)Ax Ay, i#O or j+O (7a)

= - [1+~0.5mkaH[2)( ka)], i=O and j=O (7b)

where ~ = ~ (not to be confused with index j), pz = (i Ax)z

+(j Ay)2, and a2 = Ax Ay/r. The functions gwp are given by

(7C)

where p,v=xory, fi=y ’if v=x,6=x’ ifv=y, pdenotes

the distance between the integration point (x’, y‘) and the

associated face-centered node point, and the integral is carried

along the left or bottom side of a cell. The gxY and gYX are

readily calculated by noting that dG /dp = – dG/dp’. For the

g..(i, j) and gYY(i, j) with i # O or j + O, numerical integrations

were used. For the gXK(O, O) and gYY(O, O), associated derivatives

of the Green’s function are zero when p # O, and become

singular when p = O. Such a singularity is integrable and the

result is ~ ~, depending on which side of the interface a face-

centered node point approaches [15]. Such indefinite terms

degrade the convolution property in the EFIE. To avoid the

trouble, we let gXX(O, O) = gYY(O,O) = O and, accordingly, intro-

duce

sX(i, j)=~, Ic(i, j)l>le(i-l, j)l

1—— 23 otherwise (7d)

and

sy(i, j)=+, l~(i, j)l>le(i, j-l)l

1——
2, otherwise. (7e)

It is essential to note that with GX~aX and ●Y~,X emerging in

the denominators of (6a) and (6b), the magnitudes of off-diago-

nal matrix elements are always kept small, regardless of the

magnitude of the permittivity distribution. It is shown in Section

V that the condition number of the resulting matrix is relatively

small and hence the results are less sensitive to the error in

modeling. Thus, the scatterer does not need to be modeled very

accurately. As a result, the simple block model in conjunction

with the pulse-function expansion and the point-matching tech-

nique works well. Moreover, the associated calculation preserves

the convolution property in the EFIE, and the FFT can be

incorporated into the algorithm.

IV. MAIN OPERATIONS USING CGM AND FFT

The conjugate gradient method in conjunction with the FFT

algorithm can be used to solve the simultaneous equations (5)

[5], [61. The main computations for each iteration step in the

CGM are

DX(i, j)–sz(i, j)xl(i, j) DX(i, j)– F,;’

{F[glF[x3Dxl+F[ gxKIF[x,Dtl+F[g.ylF[ x2~y]}

(8a)

~y(ijj) –~y(ijj)x2(i, j) Dy(i, j)– F,;’

{F[g]F[x4Dy]+ F[g,xlF[x,D.l+F [gyylF[x2~y]}

(8b)

RX(i, j)–sX(i, j)xT(i, j) RX(i, j)

–xY(i, j) Fz;’{F[g]*F[RX]}

-x?(i,j)~;’{~[g..~ ]”~[~.]+~[gy.]”~ [~y]} (8c)

and

RY(i, j)–sY(i, j)xY(i, j) RY(i)j)

-x?(ij.i)~,;’{~ [gl”~[~, ]}

–xj(i, j) F,; l{ F[g.Y]*F[~. ]+ HgyYl*F’[~Y]} (W

where O<i<ml–land O<j <m2–1.1n (8) DYand RW are

nl x nz two-dimensional arrays with nl > 2ml – 1,n2 > 2m2 – 1,
and both nl and n2 being integer powers of 2. Arrays DP(i, j)

and RP(i, j), with O < i < ml –1 and O < j< m2 –1, correspond

to the auxiliary correction and residue vectors used in the CGM,

respectively, and DX(i, j) = DY(i, j) = RK(i, j) = RY(i, j) = O when
i > ml or when j > mz [5]. The symbol F denotes an FFT

operating on n ~ X n z two-dimensional arrays, and F,; 1 denotes

the ith row and jth column element of the resulting array after

the inverse FFT. The asterisk superscript denotes complex con-

jugate. In writing (8c) and (8d), we have made use of the

property F[f”( – i, – j)]= F[f(i, j)]*, where ~ is an arbitrary

n ~ x nz two-dimensional (periodic) array [16]. It is seen that the

computations in’ (8) require 12 n ~X n ~-point FFT’s. Note that

the memory requirement is linearly proportional to the total

number of unknowns.

V. CONDITION NUMBER OF THE MATRIX

The equations in (5) can be written in the form of the matrix

equation

Ax=b (9)

where the vectors x and b denote the unknown and incident

fields, respectively. The condition number c of matrix A is a

measure of the sensitivity of the solution x with respect to the

errors in A or b. Quantitatively, this number is given by the

product [see, for example, 17, ch. 9]

C= IIAII. IIA-111 (lo)

where IIAII and 11A– 111are the spectral norms of matrix A and

its inverse, and are equal to the square roots of the largest and

smallest eigenvalues of the composite matrix ~ (A- being the

transpose and complex conjugate of matrix A), respectively. A

quick way to estimate the spectral norm of a matrix A is to

calculate the Euclidean norm ]IA II. and the maximum column-

sum norm IIAII1, where Ilxlll. = the square root of the sum of

all the magnitudes of the matrix elements and IIAII1 =
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TABLE I
COMPARISONOF CONDITION NUMBERS,c, OF THE MATRICES

RESULTINGFROMTwo FORMULATIONSOF THE EFIE

Conventional Method Present Method

e A/h IIAII llA-lll C 11~11 llA-lll C

2 0.04 1.943 1.072 2.08 1.073 2.153 2.31
10 0.01 9.503 1.291 12.27 1.127 8.567 9.65

100 0.004 94.570 1.666 157.58 1.115 23.674 26.40
1000 0.001 945.256 1.792 1694.03 1.115 27.219 30.36

&
y=-O. ee5A

.4.

.2 ,

.1

-.07s -.845 -.015 .815 .045 .97s
x/?$

(a)

&
x =-e. ees)i

1

.4 ,

IExl-s ‘
.2 ,

.1 .

.8+
-.07s -.845 -.015 .81s .a4s .075

y/A

‘(b)

Fig. 3. Field distributions inside the circular cylinder of radius 0.075A.
The solid lines are the exact solutions; the squares or crosses are the
calculated results.

max{slsz . . . s.}, s, denoting the sum of the magnitudes of the

elements in the jth column and n being the order of matrix A.

Both of these two norms are upper bounds of the spectral norm.

In addition, lower bound of the spectral norm can be found [17,

ch. 1]. Thus, one has

be< 1141<11’fllell~lll.
G

(11)

Thereby, it can be expected that the spectral norm will become

large (small) when most of the magnitudes of the matrix ele-

ments are large (small).

To calculate the spectral norms of A and its inverse, we use

the tridiagonalization and Sturm sequence [17, ch. 10] to solve

for the eigenvalues of the composite matrix ~. In doing this

the matrix must be formed explicitly. We also apply the power

method and the inverse power method [17, ch. 10] to check the

results. It takes much more computation to find the condition

number than to solve the EFIE. Thus, only small cases are

treated in this section. Consider a homogeneous dielectric cylin-

der with a square cross section modeled by 3 X 3 cells. In the

calculation we set ml = mz = 4 and Ax = A y = A. Four eases

with various relative permittivities ● and ratios A/A (A being

the free-space wavelength) are considered in Table I. Fcm a

direct comparison, the results of the matrices resulting from

both the conventional [5] and the present method are given. It is

seen that the norm [1A II of the conventional method increases

almost linearly with the permittivity .s, when .s is large. This is

because the magnitudes of the off-diagonal elements are roughly

proportional to the permittivity ~ [5] and are large enough to

dominate the norm IIAII. In contrast to this, the magnitudes of

the off-diagonal elements in the present method are kept small

and, together with those of the diagonal elements, are slc)wly

varying with the magnitude of the permittivity; Consequently,

the norm 11AII of the present method is kept almost constant,

regardless of the magnitude of the permittivity. Unexpectedly, it

is seen that the norm IIA – 1\I of the present met~d increases

somewhat with the permittivity. Thus, the condition number

degrades somewhat as the permittivity is increased.

VI. NUMERICAL RESULTS

In order to check the accuracy of the proposed method, we

consider the TE scattering by a circular homogeneous dielectric

cylinder. The incident field is assumed to be E’ = $ exp ( – ~kx).

The relative permittivity of the cylinder is chosen to be as large

as 100. Actually, we use the staircase approximation in our

calculation for the circular cylinder. To comply with the FFT

algorithm we use 16x 16 square cells (ml = m2 = 16 and nl ==n2

= 32) in the calculation. But the cells outside the cylinder are

filled just with air (vacuum). The total number of unknowns is

512, the maximum value executable on our present personal

computer.

The field distributions near the x and y axes inside a circular

cylinder are shown in Fig. 3, where the center of the cylinder is

placed at the origin of the x – y plane. The radius is 0.075A and

the corresponding cell’s side length A is 0.01A (A being the

free-space wavelength). Since the relative permittivity is 100, the

cylinder’s radius corresponds to 0.75 internal wavelength and

the A corresponds to choosing ten node points per internal

wavelength. Also shown in the figures are the exact solutions

[18]. It is seen that the agreement is reasonably good. Note that

for a scatterer with such a large permittivity, the conventional

procedure for the block model [5] does not converge at all when

the CGM is used, or yields entirely unreliable results when a

direct method is used (as shown by the results in [81). Since the

CGM is an iterative method, one has to estimate the solution

initially, In this investigation, incident fields were used as the

starting functions. It is understood that the incident field be-

haves quite differently from the final solution, when the permit-

tivity is large. For the case in Fig. 3, the number of iterations

necessary for the CGM to reach convergence (the norm of

residue <10-4, is 175. This number is much smaller than 512,

which is another indication of the condition numbers of the

corresponding matrix being small. For larger radii it is seen that

the convergence rates slow down and the errors increase signifi-

cantly.

VII. CONCLUSION

F~ce-centered node points have been incorporated into the

numerical procedure for solving the EFIE using the simple and

efficient pulse-basis block model. By properly choosing the
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unknown fields, the condition numbers of the resulting matrices

are kept relatively small even when the permittivity is large.

Compared with the exact solutions, it is seen that the accuracy is

reasonably good.

It is seen that the norm IIA -1 II of the present method in-

creases somewhat with the permittivity. The condition number

of the matrix will be improved further if this norm can be

reduced.
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A Dipole Antenna for Interstitial

Microwave Hyperthermia

W. Hiirter, F. Reinhold, and W. J. Lorenz

Abstract —Arr improved interstitial microwave antenna design was

investigated in static phantom experiments at 915 MHz and different
insertion depths. Compared with conventional interstitial antennas, the

dipole microwave antenna presented in this paper shows heating pat-

terns which are concentrated on the dipole irrespective of the insertion

depth. By analogy to interstitial radiotherapy, the microwave antenna we
have deyeloped thus allows a high concentration of energy in the target

volume with as little damage as possible to the healthy surrounding

tissue. The nndesired heating of healthy tissue along the feeding line
observed with conventional interstitial antennas is avoided. A A/4
sleeve on the feeding line (which does not radiate microwave energy
itself to the surrounding tissne) transforms an open end, i.e., a high
impedance at the generator end of the dipole antenna. The current
flowing back along the ontside of the outer condnctor of the feeding line
in the direction of the generator is O at this point. Both dipole sections
thus have the same terminating impedance. Since the A/4 sleeve is

mounted outside the antenna, its mechanical length is not restricted by

the mechanical length of the antenna. It can hence be charged with

dielectric materials of low dielectricity constants, e.g. PTFE.

I. INTRODUCTION

Results from basic research and clinical investigations show

that hyperthermia in combination with radiotherapy is an effec-

tive means of treating cancer [1]–[4]. In addition, many of these

results demonstrate that the level of hyperthermic cytotoxicity

and the sensitization of the tumor tissue to radiotherapy rise

exponentially with temperature [5], [6]. The result of treatment

thus crucially depends on the capacity of the hyperthermia

system to attain a controlled temperature hyperelevation of the

entire target volume [7], [8]. Interstitial microwave antennas are

especially suitable for inducing hyperthermia of deep-seated

tumors (e.g. certain brain tumors), since a homogeneous distri-

bution of electromagnetic energy in the target volume also

entails the expectation of an almost homogeneous stable tem-

perature hyperelevation in the target volume except when there

are major temperature gradients in the vicinity of large vessels.

A “thermal washout” by flow of blood, such as can be observed

in the use of ferromagnetic seeds or radio frequency needles,

occurs to a much lesser extent here [9]. Inter alia, the distribu-

tion of the electromagnetic field can be adapted to the respec-

tive target volume by the form and arrangement of the inter-

stitial microwave antennas. The plastic catheters used in

interstitial combination therapy (radiotherapy/hyperthermia)

can be used to accommodate both, e.g. radioactive iodine seeds

and microwave antennas.
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