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Fig. 3. Outer conductor of elliptical cross section.
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Fig. 4. Inner conductor of regular-polygon cross section for (a) N =2,

b)N=3,(c) N=4,and (d) N=6.

inversion by optimization a general-purpose tool very applicable
to a broad range of cases.

Indeed, nearly all the structures examined led to large ratios
between adjacent sides in the transformed plane of the opti-
mization. These ratios cannot be handled with traditional tech-
niques, but by developing the integration techniques introduced
in [2], ratios up to 10" have been easily faced. Nevertheless,
these conformal mapping techniques often require knowledge of
magnetic boundary walls which are not immediately suggested
by the geometry of the structure.
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A Procedure for Solving the Electric Field Integral
Equation for a Dielectric Scatterer with a Large
Permittivity Using Face-Centered Node Points

Ching-Chuan Su

Abstract —A numerical procedure for solving the electric field integral
equation (EFIE) using the pulse-basis block model is proposed. The
main features of the method are the use of face-centered node points
and a unique way of choosing the unknown fields. Such a procedure
keeps the resulting matrix relatively well conditioned, even when the
magnitude of the permittivity is large. In addition, the proposed proce-
dure can preserve the convolution property contained in the EFIE and,
hence, the FFT can be incorporated into the algorithm.

I. INTRODUCTION'

The electric field integral equation (EFIE) is widely employed
to analyze inhomogeneous dielectric scatterers of arbitrary
shapes. To solve the integral equation numerically the method
employing the block model (i.e., using rectangular cells to model
an arbitrarily shaped scatterer) in conjunction with the pulse-
function expansion and the point-matching technique is rather
popular [1]-[7]. Recently, the efficiency of this method with
respect to both computational speed and memory requirements
has been greatly improved by the use of the conjugate gradient
method (CGM) and the fast Fourier transform (FFT) [4]-[6].
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However, except for the two-dimensional TM (transverse
magnetic) scattering cases, the conventional procedure for solv-
ing the EFIE using the pulse-basis block model has one fatal
drawback: the relative permittivity of the scatterer must be kept
small (of order unity). Otherwise, the iterative CGM converges
very slowly or may even stagnate [5]-[7]. Even if a solution is
obtained using the CGM or other methods, it may contain
serious errors [7]-[9]. These errors are believed to be due to a
term in the EFIE representing the effect of induced polarization
charge [5]. (Note that such a term does not emerge in the TM
scattering.) It has been indicated that, in the presence of such a
charge term, the magnitudes of off-diagonal elements and hence
the condition numbers of the resulting matrices increase as the
permittivities are increased [5]. Remark that in the matrix equa-
tion Ax = b the condition number ¢ of matrix A4 is a measure of
the sensitivity of solution x due to sight variation in matrix 4 or
vector b. For a well-conditioned matrix, ¢ is close to unity; for
an ill-conditioned one, ¢ >> 1. A more detailed discussion of the
condition number is given in Section V. The accuracy may be
improved if more sophisticated approaches are used (to reduce
the error in matrix 4), for example evaluating matrix elements
elaborately [5], [6], [8], [10], modeling the scatterer accurately by
using more flexible cells [8], [11]-[13], and employing higher
order basis functions [11]-[13]. However, these approaches are
not necessarily workable for scatterers with large permittivities
(for example, see [8]). Moreover, the use of sophisticated cell
structures and /or basis functions may degrade the convolution
property contained in the EFIE. Thus, the efficient FFT cannot
be applied and the memory requirement is prohibitively large.

In order to solve the EFIE using the simple pulse-basis block
model, a new procedure is proposed. The main features of this
procedure are the following two steps:

1) Face-centered node points are used. That is, the node
points at which the fields are to be sampled are not placed
at the center of each block, as conventionally done, but are
placed at the centers of the faces of each block. Such an
approach should represent the polarization charges in-
duced at the faces more accurately, especially at larger
permittivity discontinuities around which the electric field
varies rapidly.

2) The unknown fields at the face-centered node points are
chosen in a unique way to ensure that the magnitudes of
off-diagonal elements of the resulting matrix are small,
regardless of the magnitudes of the permittivities involved.
Such an approach will keep the condition number of the
resulting matrix small, even when the magnitudes of the
permittivities are large.

In this investigation we consider the two-dimensional case,
where exact solutions for the electric field distributions inside
circular homogeneous cylinders are available and can be used to
check the calculated results. The numerical procedure discussed
in Sections III and IV can be generalized to the three-dimen-
sional case.

II. ELectric FieLD INTEGRAL EqQuaTION

Consider the TE (transverse electric) scattering from an
isotropic dielectric cylinder with an arbitrary relative permittiv-
ity distribution e(x,y) exposed to an incident field E‘(x,y)
polarized in the x—y plane. The resultant electric field E(x,y)
= £E (x,y)+ JE (x,y) can be found from the magnetic vector
and electric scalar potentials, which are due to the polarization
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Fig. 1. A rectangular mesh with m, X m, identical cells of size Ax by
Ay. The (m; —1)X(m, —1) cells should cover the cylinder’s cross sec-
tion.

current and polarization charge densities, respectively; that is,

E(x,y)=E'(x,y)

+szfG(kp){[E(x”y,)Hl]E(xlyy/)} di' dy’

- infG(kp)p (x',y")dx'dy'. (1)
€ ¢

Here V=1xd/dx + $d/dy, the two-dimensional free-space

Green’s function G(kp)= HP(kp)/4s, p*=(x—x) +(y —

¥v)?, k*=w’uyey, and p, denotes the induced polarization

charge density, which can be expressed in several ways:

pe(%,9)=—€V-{[e(x,y) - 1]E(x, )} (2a)
=eV-E(x,y) (2b)
_ﬂ_EVe(x,y). . .
=iy ), (20

where the continuity equation and Gauss’s law have been made
use of. It is understood that (2b) and (2c) are valid in those
regions having no free charge. Different expressions correspond
to different formulations. Use of (2a) leads to the commonly
used electric field integral equation involving a dyadic Green’s
function. It is shown in Section V that the condition numbers of
the matrices resulting from such a formulation increase as the
permittivities are increased.

III. NuMEeRICAL PROCEDURE FOR FACE-CENTERED
Nobe Points

The scatterer is modeled by rectangular cells wherein the
permittivity within each cell is treated as a constant (namely, the
block model). The pulse-function expansion and the point-
matching technique are employed in the numerical calculation.
The node points at which the EFIE is enforced are placed at the
centers of the faces (sides, in the two-dimensional case) of each
cell. The x and y components of the electric field are sampled
and matched at the points marked with a cross (X) and square
(W), respectively, as depicted in Fig. 1. Note that these fields
are the normal components with respect to the corresponding
interfaces.

The polarization charge density can be given by (2). In the
block model the polarization charges are induced only at the
interfaces and can be found from the normal components of the
electric fields at the interfaces using (2a) or (2b). At an interface
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Fig. 2. Fields E,, E,,, E,;, and E,; denote the normal components
at two face-centered node points. From such fields the polarization
charges at the node points are determined.

separating two blocks of dissimilar media, the normal compo-
nent of the electric field is discontinuous. From the continuity of
displacement it is known that the normal components of the
fields at the respective interfaces satisfy the relations (see Fig. 2
for the locations of the permittivities and field components)

(3a)

e By =6E,
and

e E, =eF;. (3b)
At an interface separating two blocks of dissimilar media the
density becomes impulsive. Using (2b) and (3) the corresponding
surface (line, in the two-dimensional case) charge densities p,,
and p,, at the respective face-centered node points are given by

Pex =€0Ey2 62; o ) le,| = le, (42)
=egE 62;61 , otherwise (4b)
and
psy=EOEy3§E_l—€1’ le ) > lesl (4¢)
€37 €& .
= eoEyl—e-—, otherwise. (4d)

3

Unique to this method is that we use either (4a) or (4b) to
represent the surface charge density in the integral equation (1)
(and, hence, choose either E,, or E,; as the field to be deter-
mined) according to whether €, or €, is larger in magnitude. It is
essential to note that the fractions involving the relative permit-
tivities in the chosen formulas are always small in magnitude
(ordinarily less than unity). Consequently, the magnitudes of
off-diagonal matrix elements can be kept small, regardless of the
magnitudes the permittivities involved. In this manner, the node
point is not exactly placed at the interface, but approaches the
interface from the side where the permittivity is smaller. The
same procedure is used to select either E,; or E,; as an
unknown field in the integral equation.
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To comply with the FFT algorithm we use a rectangular mesh
which is composed of m, X m, identical cells of size Ax by Ay
and covers the cross section of the scatterer (see Fig. 1). Then,
on applying the point-matching technique at each node point,
the integral equation (1) becomes the 2 X m, X m, simultaneous
equations in terms of the m, X m, fields E, at the node points
marked with a cross and the m; X m, fields E, at the node
points marked with a square:

E.(i,7) = Ex(i, 1) + 8206 ) xa(8, 1) Ex (1, )
my~1my;—1

+ Y X {e(i-p.i—a)x:(p.9)E.(P.q)

g=0 p=0
+e. (i—pi—-a)x(p,0)E(p,q)

+ 8, (i—P.i = )x2(P,0)E\(P,2)} (5a)
and
E,(i,J)=Ey(i,j)+ s,(i,))x2(i, /) E, (i, )
my—1m;—1
+ Y Y {e(i—pr.i—a)x«(p.9)E,(P,q)
g=0 p=0
+g,.(i—-p,i—)x(p.a)Ep,q)
+2,(i—p,Ji—)x2(p, ) E,(p.a)} (5b)

where i=0,1,---,m;—1 and j=0,1,---,m, —1. In (5) E,(i,])
and E (i, ) denote the field components at the face-centered
node points approaching, according to the procedure just de-
scribed, the left and the bottom sides of cell i, respectively.
EL(i,j) and E!(i,j) denote the x and y components of the
incident field at the corresponding node points. The quantities
X1> X25 X35 X4> 8> 8xxs &xyr 8yxs Eyy> Sxs and s, are defined in
what follows.

The functions y; and y, correspond to the effect of the
induced polarization charge, and y; and y,, of the polarization
current. By applying the pulse-function expansion or approxi-
mating the normal component of the electric field along an
interface by the field at the nearest face-centered node point,
E(i,j) or E(i, ), and using formula (4), we have

Xl(ivj)={E(i’j)_€(i_1’j)}/exmax (63')

and

XZ(i’j) ={€(i’j) - E(iﬂj_—l)}/eymax
where €(i, j) is equal to the average relative permittivity over the
cell ij, and €, and e, denote the greater magnitude
between e(i, ) and e(i — 1, j) and between €(i, j) and (i, j — 1),
respectively. It is seen that at an interface separating two blocks
of similar media, the polarization charge is set to zero autornati-
cally, as it should be. In other words the associated fictitious
charge [8] appearing in the conventional procedure is eliminated
automatically. To calculate the polarization current density, one
needs to know the electric field within the cells. By approximat-
ing the two components of such a field by the fields at the
respective nearest face-centered node point and using relation
(3), we have

xa(ir ) ={e(i, Ne(i~1,7) = 4[e(i, /) + €(i =1, /) ]} /€ mas

(6b)

(60)
and
xa(i,0) ={e(i, e, j~1)—3 e(i’j)+€(i’j_1)]}/eymax‘
(6d)
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In (5) the functions g denote the values of k% times an
integral of the Green’s function over a cell. Since the matrices
will be well conditioned, it suffices to use the simple formula
[14]

g(i,j)=k*G(kp)AxAy, i#=0 or j#0

(72)

=—[1+ ,057kaHP(ka)], i=0 and j=0 (7b)

where , =v—1 (not to be confused with index j), p? = (i Ax)?
+(jAy)? and @’ = Ax Ay /m. The functions g,, are given by

d
8,,(i,7) =a/G(kp)dﬁ (7c)

where y,v=xor y, 7=y if v=x, p=x"if v=y, p denotes
the distance between the integration point (x’,y’) and the
associated face-centered node point, and the integral is carried
along the left or bottom side of a cell. The 8, and g, are
readily calculated by noting that G /du = — 3G /du'. For the
g.(i,/) and g, (i, ) with i # 0 or j # 0, numerical integrations
were used. For the g,,(0,0) and g, (0,0), associated derivatives
of the Green’s function are zero when p+#0, and become
singular when p=0. Such a singularity is integrable and the
result is + %, depending on which side of the interface a face-
centered node point approaches [15]. Such indefinite terms
degrade the convolution property in the EFIE. To avoid the
trouble, we let g,,(0,0)=g, (0,0)=0 and, accordingly, intro-
duce

5. (60) =2, le(i,)=le(i—1,))
=—1, otherwise (7d)
and
s,(i,0)y=3,  le(i,)Izle(i,j—1)I
=—1, otherwise. (7¢)

It is essential to note that with €, ., and €, . emerging in
the denominators of (6a) and (6b), the magnitudes of off-diago-
nal matrix elements are always kept small, regardless of the
magnitude of the permittivity distribution. It is shown in Section
V that the condition number of the resulting matrix is relatively

small and hence the results are less sensitive to the error in

modeling. Thus, the scatterer does not need to be modeled very
accurately. As a result, the simple block model in conjunction
with the pulse-function expansion and the point-matching tech-
nique works well. Moreover, the associated calculation preserves
the convolution property in the EFIE, and the FFT can be
incorporated into the algorithm.

IV. Mam OreraTiOoNs Using CGM anp FFT

The conjugate gradient method in conjunction with the FFT
algorithm can be used to solve the simultaneous equations (5)
[5], [6]. The main computations for each iteration step in the
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CGM are
D.(6,)) = s.(i,)x:(i, /) De(i, ) - F,
A{FI]F[xsD,1+ Flg, JF[x,D,1+ Flg,,]F[x.D,] }
(8a)
Dy(i,7) = s, (i, ) x2(i,0) Dy (i, j) = F!
AFl&]F[x.D,] + Flg,. |F[x,D,1+ Flg,,1F[ x,D,]}
(8b)
R (i,7) = s, (i, DIxF (5 ) R(i57)
X3 DE{FLEFIR,])
—xt(LDFFl8 " FIR, ]+ Flg, . ]*F[R,]} (8c)
and
R (i,7) = s, (i, ))xF (i, D R,(i5])
—xi (i, ) F;{F[g]*F[R,]}
~Xz‘(i,f)E;I{F[gxy]*F[Rr]+F[gyy]*F[Ry]} (8d)
where 0 <i<m;—1and 0<j<m,~1.In (8) D, and R, are
n; X n, two- drmens1onal arrays with n; > 2m, -1, n2 2n12 1,

and both n, and n, belng integer powers of 2. Arrays D (i, )
and R, (i, /), with 0<i<m;~1land 0<j<m,—1, correspond
to the auxrllary correctlon and residue vectors used in the CGM,
respectively, and D, (i, /)= D,(i, /)= R (i, /)= R (i, j) = 0 when
iz»my or when j>m, [5]. The symbol F denotes an FFT
operating on n; X n, two-dimensional arrays, and FJI denotes
the ith row and jth column element of the resulting array after
the inverse FFT. The asterisk superscript denotes complex con-
jugate. In writing (8¢) and (8d), we have made use of the
property F[f*(—i, — ))]= F[ f(i, D]*, where f is an arbitrary
n; X n, two-dimensional (periodic) array [16]. It is seen that the
computations in (8) require 12 n; X n,-point FFT’s. Note that
the memory requirement is linearly proportional to the total
number of unknowns.

V. ConprtioN NUMBER OF THE MATRIX

The equations in (5) can be written in the form of the matrix
equation

Ax=b (9)

where the vectors x and b denote the unknown and incident
fields, respectively. The condition number ¢ of matrix 4 is a
measure of the sensitivity of the solution x with respect to the
errors in 4 or b. Quantitatively, this number is given by the
product [see, for example, 17, ch. 9]

c=All-lIl4= (10)

where [|All and |4~ Y| are the spectral norms of matrix 4 and
its inverse, and are equal to the square roots of the largest and
smallest eigenvalues of the composite matrix 44 (4 being the
transpose and complex conjugate of matrix A), respectively. A
quick way to estimate the spectral norm of a matrix 4 is to
calculate the Euclidean norm || 4[], and the maximum column-
sum norm | 4ll;, where || 4}, = the square root of the sum of
all the magnitudes of the matrix elements and | A, =
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TABLE 1
CompParison or CoNpiTiON NUMBERS, ¢, OF THE MATRICES
REesurting FROM Two FormuraTiONs oF THE EFIE

Conventional Method Present Method
€ A/A lal 14~ c 4l N4~ c
2 004 1943 1.072 2.08 1.073 2.153 231
10 0.01 9.503 1.291 1227 1127 8567  9.65
100 0.004 94570 1.666 157.58 1.115 23674 2640 -
1000 0.001 945256 1.792 1694.03 1.115 27219 30.36
.5
Yy ==-2.885\
A
.9
[E,l
.2
a ]
* . * a
.1
.9
-.87% -. 045 -.015 .815 .85 .875
x/ A
(a)
.5
X=-0.085\
.4
.3
|E,d
.2
.1
.9
-.875 -.845 -.815 .15 045 .875
y/ A
‘)

Fig. 3. Field distributions inside the circular cylinder of radius 0.075A.
The solid lines are the exact solutions; the squares or crosses are the
calculated results.

max{s;s, - -+ 5,}, s, denoting the sum of the magnitudes of the
elements in the jth column and » being the order of matrix 4.
Both of these two norms are upper bounds of the spectral norm.
In addition, lower bound of the spectral norm can be found [17,
ch. 1]. Thus, one has
- ()

Vn

Thereby, it can be expected that the spectral norm will become
large (small) when most of the magnitudes of the matrix ele-
ments are large (small).

To calculate the spectral norms of 4 and its inverse, we use
the tridiagonalization and Sturm sequence [17, ch. 10] to solve
for the eigenvalues of the composite matrix AA. In doing this
the matrix must be formed explicitly. We also apply the power
method and the inverse power method [17, ch. 10] to check the
results. It takes much more computation to find the condition

Alle < liAll <li4lle, I14l;.
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number than to solve the EFIE. Thus, only small cases are
treated in this section. Consider a homogeneous dielectric cylin-
der with a square cross section modeled by 3X3 cells. In the
calculation we set m; =m, =4 and Ax =Ay=A. Four cases
with various relative permittivities e and ratios A /A (A being
the free-space wavelength) are considered in Table I. For a
direct comparison, the results of the matrices resulting from
both the conventional [5] and the present method are given. It is
seen that the norm ||A|| of the conventional method increases
almost linearly with the permittivity €, when e is large. This is
because the magnitudes of the off-diagonal elements are roughly
proportional to the permittivity e [5] and are large enough to
dominate the norm || 4. In contrast to this, the magnitudes of
the off-diagonal elements in the present method are kept small
and, together with those of the diagonal elements, are slowly
varying with the magnitude of the pefmittivity; Consequently,
the norm || 4|l of the present method is kept almost constant,
regardless of the magnitude of the permittivity. Unexpectedly, it
is seen that the norm ||4~!|| of the present method increases
somewhat with the permittivity. Thus, the condition number
degrades somewhat as the permittivity is increased.

VI. NumeERricaL REsuLTS

In order to check the accuracy of the proposed method, we
consider the TE scattering by a circular homogeneous dielectric
cylinder. The incident field is assumed to be E’ = Jexp(— ,kx).
The relative permittivity of the cylinder is chosen to be as large
as 100. Actually, we use the staircase approximation in our
calculation for the circular cylinder. To comply with the FFT
algorithm we use 16 X 16 square cells (m; =m, =16 and n, =n,
= 32) in the calculation. But the cells outside the cylinder are
filled just with air (vacuum). The total number of unknowns is
512, the maximum value executable on our present personal
computer.

The field distributions near the x and y axes inside a circular
cylinder are shown in Fig. 3, where the center of the cylinder is
placed at the origin of the x—y plane. The radius is 0.075A and
the corresponding cell’s side length A is 0.01A (A being the
free-space wavelength). Since the relative permittivity is 100, the
cylinder’s radius corresponds to 0.75 internal wavelength and
the A corresponds to choosing ten node points per internal
wavelength. Also shown in the figures are the exact solutions
[18]. It is seen that the agreement is reasonably good. Note that
for a scatterer with such a large permittivity, the conventional
procedure for the block model [5] does not converge at all when
the CGM is used, or yields entirely unreliable results when a
direct method is used (as shown by the results in [8]). Since the
CGM is an iterative method, one has to estimate the solution
initially. In this investigation, incident fields were used as the
starting functions. It is understood that the incident field be-
haves quite differently from the final solution, when the permit-
tivity is large. For the case in Fig. 3, the number of iterations
necessary for the CGM to reach convergence (the norm of
residue <107%) is 175. This number is much smaller than 512,
which is another indication of the condition numbers of the
corresponding matrix being small. For larger radii it is seen that
the convergence rates slow down and the errors increase signifi-
cantly.

VII. CoNCLUSION

Face-centered node points have been incorporated into the
numerical procedure for solving the EFIE using the simple and
efficient pulse-basis block model. By properly choosing the
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unknown fields, the condition numbers of the resulting matrices
are kept relatively small even when the permittivity is large.
Compared with the exact solutions, it is seen that the accuracy is
reasonably good.

It is seen that the norm |4~ Y| of the present method in-
creases somewhat with the permittivity. The condition number
of the matrix will be improved further if this norm can be
reduced.
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A Dipole Antenna for Interstitial
Microwave Hyperthermia

W. Hiirter, F. Reinbold, and W. J. Lorenz

Abstract —An improved interstitial microwave antenna design was
investigated in static phantom experiments at 915 MHz and different
insertion depths. Compared with conventional interstitial antennas, the
dipole microwave antenna presented in this paper shows heating pat-
terns which are concentrated on the dipole irrespective of the insertion
depth. By analogy to interstitial radiotherapy, the microwave antenna we
have developed thus allows a high concentration of energy in the target
volume with as little damage as possible to the healthy surrounding
tissue. The undesired heating of healthy tissue along the feeding line
observed with conventional interstitial antennas is avoided. A A /4
sleeve on the feeding line (which does not radiate microwave energy
itself to the surrounding tissue) transforms an open end, i.e., a high
impedance at the generator end of the dipole antenna. The current
flowing back along the outside of the outer conductor of the feeding line
in the direction of the generator is 0 at this point. Both dipole sections
thus have the same terminating impedance. Since the A /4 sleeve is
mounted outside the antenna, its mechanical length is not restricted by
the mechanical length of the antenna. It can hence be charged with
dielectric materials of low dielectricity constants, e.g. PTFE.

I. INTRODUCTION

Results from basic research and clinical investigations show
that hyperthermia in combination with radiotherapy is an effec-
tive means of treating cancer [1]-[4]. In addition, many of these
results demonstrate that the level of hyperthermic cytotoxicity
and the sensitization of the tumor tissue to radiotherapy rise
exponentially with temperature [5], [6]. The result of treatment
thus crucially depends on the capacity of the hyperthermia
system to attain a controlled temperature hyperelevation of the
entire target volume [7], [8]. Interstitial microwave antennas are
especially suitable for inducing hyperthermia of deep-seated
tumors (e.g. certain brain tumors), since a homogeneous distri-
bution of electromagnetic energy in the target volume also
entails the expectation of an almost homogeneous stable tem-
perature hyperelevation in the target volume except when there
are major temperature gradients in the vicinity of large vessels.
A “thermal washout” by flow of blood, such as can be observed
in the use of ferromagnetic seeds or radio frequency needles,
occurs to a much lesser extent here [9]. Inter alia, the distribu-
tion of the electromagnetic field can be adapted to the respec-
tive target volume by the form and arrangement of the inter-
stitial microwave antennas. The plastic catheters used in
interstitial combination therapy (radiotherapy/hyperthermia)
can be used to accommodate both, e.g. radioactive iodine seeds
and microwave antennas.
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